Sage as a Calculator

By Samaneh shafi naderi

S50AE

By Samaneh shafi naderi Sage as a Calculator

Contents

@ Arithmetic and Functions

Contents

@ Arithmetic and Functions
e Basic Arithmetic

Contents

@ Arithmetic and Functions

e Basic Arithmetic
o Integer Division and Factoring

Contents

@ Arithmetic and Functions
o Basic Arithmetic
o Integer Division and Factoring
e Standard Functions and Constants

Contents

@ Arithmetic and Functions

o Basic Arithmetic
o Integer Division and Factoring
e Standard Functions and Constants

@ Getting help and Search

Contents

@ Arithmetic and Functions

o Basic Arithmetic

o Integer Division and Factoring

e Standard Functions and Constants
@ Getting help and Search

e Help

Contents

@ Arithmetic and Functions

o Basic Arithmetic

o Integer Division and Factoring

e Standard Functions and Constants
@ Getting help and Search

e Help
e Search

Contents

@ Arithmetic and Functions

o Basic Arithmetic

o Integer Division and Factoring

e Standard Functions and Constants
@ Getting help and Search

e Help

e Search

o Working with cells

Contents

@ Arithmetic and Functions
o Basic Arithmetic
o Integer Division and Factoring
e Standard Functions and Constants

@ Getting help and Search

e Help

Search

Working with cells
working with codes

Contents

@ Arithmetic and Functions
o Basic Arithmetic
o Integer Division and Factoring
e Standard Functions and Constants

@ Getting help and Search

e Help

Search

Working with cells
working with codes

Assignment

Sage uses = for assignment. It uses ==,<,> , < and > for
comparison:
sage: a = 5
sage: a
5
sage: 2 == 2
True
sage: 2 == 3
False
sage: 2 < 3
True
sage: a == 5
True

Basic Arithmetic

The basic arithmetic operators are +, -, *, and / for
addition,subtraction,multiplication and division, while ~ is used
for exponents.

sage: 1+1

2

sage: 103-101
2

sage: 7*5

63

sage: 7337/11
667

sage: 11/4
11/4

sage: 2°5H

3z

Basic Arithmetic

The following table lists the operators that are available in Sage:

Operator Function Operator Function
= Assignment = Equality
+ Addition > Greater than
- Subtraction >= Greater than or equal to
Multiplication < Less than
Division = Less than or equal to
**orn Power I= Not equal to
% Modulo (remainder)
1/ Integer quotient

Basic Arithmetic

order of operations PEMDAS

As we would expect, Sage adheres to the standard order of
operations, PEMDAS (parenthesis, exponents, multiplication,
division, addition, subtraction).

sage: 2Z2*472+1
33

sage: (Z2*4)"2+1
65

sage: 2*4" (2+1)
128

sage: -3"72

=8

sage: (-3)"Z2

e

6/28

Basic Arithmetic

decimal approximation

When dividing two integers, there is a subtlety; whether Sage will
return a fraction or its decimal approximation. Unlike most
graphing calculators, Sage will attempt to be as precise as possible
and will return the fraction unless told otherwise.

Example

sage: 11/4.0
2.75000000000000
sage: 11/4.
2.,75000000000000
sage: 11.0/4
2.75000000000000
sage: 11/4*1.
2.,75000000000000

Integer Division and Factoring

To calculate the quotient we use the // operator and the %
operator is used for the remainder.

Example

sage: 2**3 # ** means exponent

8

sage: 273 # 2 is a synonym for ** (unlike in Python)

8

sage: 10 $ 3 # for integer arguments, % means mod, i.e., remainder
i

sage: 10/4

5/2

sage: 10//4 # for integer arguments, // returns the integer quotient
2

sage: 4 * (10 // 4) + 10 % 4 == 10

True

sage: 372%4 + 2%5

38

Integer Division and Factoring

If we want both the quotient and the remainder all at once, we use
the aivmao command

sage: divmod (14, 4)
(3, 2}

The integers in Sage have a built-in command (or method) which
allows us to check whether one integer divides another.

sage: 5.divides(17)
False

Integer Division and Factoring

A related command is the divisors() method. This method
returns a list of all positive divisors of the integer specified.

sage: 12.divisors()
[Ty 2y B, 4y 6, 12
sage: 101.divisors()
[l 10717

When the divisors of an integer are only and itself then we say that

the number is prime. To check if a number is prime in sage, we use
its isprine0 Method.

sage: (2719-1).1is prime()
True

sage: 153.1s prime()
False

10/28

Integer Division and Factoring

We use the tactoro method to compute the prime factorization of
an integer

sage: bZ.factor ()
2 * i
sage: b3.factor()
oG B 7

If we are interested in simply knowing which prime numbers divide
an integer, we may USE its prine divisorsO (OF prime-factors0)) Method.

sage: Z24.prime divisors()
(2, 31

sage: 63.prime_factors()
[3, 7]

11/28

Integer Division and Factoring
ged & lem

The greatest common divisor (ged), not too surprisingly, is the
largest of all of these common divisors. The ga0 command is used

to calculate this divisor.

sage: gcd(14,63)
7
sage: gcd(15,19)
1

Notice that if two integers share no common divisors,then their ged will be 1.

The least common multiple is the smallest integer which both
integers divide. The 10 command is used to calculate the least

common multiple.

sage: lcm(4,5)
20

sage: lcm(14,21)
42

12/28

Standard Functions and Constants

Sage includes nearly all of the standard functions that one encounters
when studying mathematics. In this section, we shall cover some of the
most commonly used functions: the maximum, minimum, floor, ceiling,
trigonometric, exponential, and logarithm functions. We will also see
many of the standard mathematical constants; such as Eufers constant(e), 7 ,
and the golden ratio(¢).

The max() and min() commands return the largest and smallest of
a set of numbers.

Example

sage: max(1,5,8)

8

sage: min(1/2,1/3)
1/3

We may input any number of arguments into the max and min functions.

for example : max(sqrt(v),sqrt(t))

13 /28

Standard Functions and Constants

In Sage we use the as0 command to compute the absolute value of
a real number.

sage: abs(-10)
10

sage: abs(4)

4

The f100r0 command rounds a number down to the nearest integer,

while cei10 rounds up.

sage: floor(Z.1)
2
sage: ceil(2.1)
3

14 /28

Standard Functions and Constants
BE CARERUL ABOUT+100r) AND cei10)

sage: floor(l/(2.1-2))
9

This is clearly not correct:[1/(2.1 —2)] = |1/.1] = [10] = 10 .So what
happend?

sage: 1/(2.1-2)
9.9588599999995999

Due to this, it is often a good idea to use rational numbers whenever possible

instead of decimals, particularly if a high level of precision is required.

sage: floor(1/(21/10-2))
10

15/28

Standard Functions and Constants

SQRT()

The sere0 command calculates the square root of a real number.

sage: sqgrt(3)
sqrt (3)

sage: sqgrt(3.0)
1.73205080756888

To compute other roots, we use a rational exponent. Sage can compute
any rational power. If either the exponent or the base is a decimal then
the output will be a decimal.

1.73205080756888

sage: 8~ (1/2)
2*sgrk (2)
sage: 87 (1/3)

2

16 /28

Standard Functions and Constants

standard trigonometric functions

Sage also has available all of the standard trigonometric functions:
for sine and cosine we use sin0 and coso.

sage: sin(
sin(1)
sage: sin(1.0)
0.841470984807897
sage: cos (3/2)
cos(3/2)

sage: cos(3/2.0)
0.0707372016677029

17/28

Standard Functions and Constants
standard trigonometric functions

Sage has a built-in symbolic 7, and understands this identity:

sage: pi

pi

sage: sin(pi/3)
1/2*sqrt(3)

When we type pi in Sage we are dealing exactly with 7 , not some
numerical approximation. However, we can call for a numerical
approximation using the »o method:

sage: pi.n()

2L N0
sage: sin(pi)

0

sage: sinipi.n())
1.22464679914735e-16

18 /28

Standard Functions and Constants

numerical approximation

To get a numerical approximation, use either the function » or the method
a (and both of these have a longer name, nunericai_approx, and the function N
is the same as). These take optional arguments prec, which is the
requested number of bits of precision, and aigits, which is the requested
number of decimal digits of precision the default is 53 bits of precision.

Example

sage: exp(2)

ef2

sage: niexp(2))

7.389056098930865

sage: sqrt(pi).numerical approx()
1.77245385090552

sage: sin(10) .n(digits=5)

-0.54402

sage: N(sin(10),digits=10})
-0.5440211109

sage: numerical approxz(pi, prec=200)
3.1415926535897932384626433832795028841971693993751058209749

19/28

Standard Functions and Constants

Here are a few examples of using the symbolic, precise 7 as the
numerical approximation:

sage: sin(pi/6)
1/2

sage: sin(pi.n()/6)
0.500000000000000
sage: sin(pi/4)
1/2*sqrt(2)

sage: sin(pi.n()/4)
0.707106781186547

Other trigonometric functions, the inverse trigonometric functions
and hyperbolic functions are also available.

sage: arctan(l.0)
0.785398163397448
sage: sinh(9.0)
4051.54190208279

20 /28

Standard Functions and Constants
logarithmic functions

Similar to p: Sage has a built-in symbolic constant for the number
e, the base of the natural logarithm.

sage: e

e

sage: e.n()
2.71828182845905

While some might be familiar with using ww for natural log and
1050 tO represent logarithm base 10, in Sage both represent
logarithm base e. We may specify a different base as a second
argument to the command: to compute logp(x) in Sage we use the
command 1ogex,n).

21/28

Standard Functions and Constants

logarithmic functions

sage: 1n(e)

1

sage: locg(e)

1

sage: log(e™2)

2

sage: locg(1lQ)
log(l1l0)

sage: log(10.0)
2.30258509299405
sage: lcg(l00,10)
2

Standard Functions and Constants

logarithmic functions

Exponentiation base e can done using both the exo function and
by raising the symbolic constant . to a specified power.

sage: exp(2)

g

sage: exp(2.0)
7.38905609893065
sage: exp(log(pi))
pi

sage: e~ (log(2))

2

23 /28

Getting Help and Search

There are three ways to get help from the Sage command line. To see the
documentation for a command or function, type a 7 on the command line after
the command. For example, to learn about the exp function type following:

Example

sage: tan?

Type: <class 'sage.calculus.calculus.Function tan'>
Definition: tan([noargspec])
Docstring:

The tangent function

EXAMPLES:
sage: tan (pi)
0

v

Use the arrows to scroll up and down. Use the Spacebar to page down, and the
b key to page up. Press q to leave the help screen and return to the command
line. If you want to see the documentation and the source code for the function
(if the code is available), type two question marks after the function name:
Sage: exp??
Finally, to see the complete class documentation, use the help function:
Sage: help(exp)
24 /28

Getting Help and Search
Tab completion

Tab completion can also make your life easier. Type the first letter
(or first few letters) of a command at the prompt, and press Tab
to see a list of possible completions. For example, type p and press

Tab:

sage: pl

plot plot step function
plot3d plot vector field
plot slope field plot vector fieldid

25 /28

Getting Help and Search
Search

To search the documentation, type searchdoc('ny queryy in an empty
input cell and evaluate the cell. You can also search the source
COde by USing search_src ("my query").

26 /28

Getting Help and Search

working with cells

The following shortcuts are useful for working with cells:

Evaluate cell With cursor in cell, hold Shift and press Enter

Insert new input cell Move cursor between cells and click when solid bar appears
Insert new text cell Move cursor between cells and Shift-click when solid bar appears
Delete cell Delete cell contents, and then press Backspace

Split cell at cursor Press Ctrl-;

loin two cells Click in the lower cell and press Ctrl-backspace

27 /28

Getting Help and Search

working with codes

The notebook interface also provides some shortcuts to make it
easier to edit code in input cells:

Tab completion Start typing the name of a command, function, or object and

press Tab to see possible completions.

Indent block of text Highlight block and press > to indent or < to unindent. In
Firefox, highlight block and press Tab to indent or Shift-Tab to
unindent.

Comment a block of code Highlight code and press Ctri-.

Uncomment a block of code Highlight code and press Ctri-,

Close parenthesis Press Ctri-0to automatically insert a closing parenthesis

(if needed). Press Ctrl-0 multiple times to close multiple
parentheses.

28 /28

